3.7.88 \(\int \frac {1}{x^{4/3} (a+b x)^2} \, dx\) [688]

3.7.88.1 Optimal result
3.7.88.2 Mathematica [A] (verified)
3.7.88.3 Rubi [A] (verified)
3.7.88.4 Maple [A] (verified)
3.7.88.5 Fricas [A] (verification not implemented)
3.7.88.6 Sympy [F(-1)]
3.7.88.7 Maxima [A] (verification not implemented)
3.7.88.8 Giac [A] (verification not implemented)
3.7.88.9 Mupad [B] (verification not implemented)

3.7.88.1 Optimal result

Integrand size = 13, antiderivative size = 124 \[ \int \frac {1}{x^{4/3} (a+b x)^2} \, dx=-\frac {4}{a^2 \sqrt [3]{x}}+\frac {1}{a \sqrt [3]{x} (a+b x)}+\frac {4 \sqrt [3]{b} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{7/3}}+\frac {2 \sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{a^{7/3}}-\frac {2 \sqrt [3]{b} \log (a+b x)}{3 a^{7/3}} \]

output
-4/a^2/x^(1/3)+1/a/x^(1/3)/(b*x+a)+2*b^(1/3)*ln(a^(1/3)+b^(1/3)*x^(1/3))/a 
^(7/3)-2/3*b^(1/3)*ln(b*x+a)/a^(7/3)+4/3*b^(1/3)*arctan(1/3*(a^(1/3)-2*b^( 
1/3)*x^(1/3))/a^(1/3)*3^(1/2))/a^(7/3)*3^(1/2)
 
3.7.88.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.15 \[ \int \frac {1}{x^{4/3} (a+b x)^2} \, dx=\frac {-\frac {3 \sqrt [3]{a} (3 a+4 b x)}{\sqrt [3]{x} (a+b x)}+4 \sqrt {3} \sqrt [3]{b} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )+4 \sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )-2 \sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt [3]{x}+b^{2/3} x^{2/3}\right )}{3 a^{7/3}} \]

input
Integrate[1/(x^(4/3)*(a + b*x)^2),x]
 
output
((-3*a^(1/3)*(3*a + 4*b*x))/(x^(1/3)*(a + b*x)) + 4*Sqrt[3]*b^(1/3)*ArcTan 
[(1 - (2*b^(1/3)*x^(1/3))/a^(1/3))/Sqrt[3]] + 4*b^(1/3)*Log[a^(1/3) + b^(1 
/3)*x^(1/3)] - 2*b^(1/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x^(1/3) + b^(2/3)*x 
^(2/3)])/(3*a^(7/3))
 
3.7.88.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.10, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {52, 61, 68, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^{4/3} (a+b x)^2} \, dx\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {4 \int \frac {1}{x^{4/3} (a+b x)}dx}{3 a}+\frac {1}{a \sqrt [3]{x} (a+b x)}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {4 \left (-\frac {b \int \frac {1}{\sqrt [3]{x} (a+b x)}dx}{a}-\frac {3}{a \sqrt [3]{x}}\right )}{3 a}+\frac {1}{a \sqrt [3]{x} (a+b x)}\)

\(\Big \downarrow \) 68

\(\displaystyle \frac {4 \left (-\frac {b \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 b}-\frac {3 \int \frac {1}{\frac {\sqrt [3]{a}}{\sqrt [3]{b}}+\sqrt [3]{x}}d\sqrt [3]{x}}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {3}{a \sqrt [3]{x}}\right )}{3 a}+\frac {1}{a \sqrt [3]{x} (a+b x)}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {4 \left (-\frac {b \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 b}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {3}{a \sqrt [3]{x}}\right )}{3 a}+\frac {1}{a \sqrt [3]{x} (a+b x)}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {4 \left (-\frac {b \left (\frac {3 \int \frac {1}{-x^{2/3}-3}d\left (1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}\right )}{\sqrt [3]{a} b^{2/3}}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {3}{a \sqrt [3]{x}}\right )}{3 a}+\frac {1}{a \sqrt [3]{x} (a+b x)}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {4 \left (-\frac {b \left (-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{a} b^{2/3}}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{a}-\frac {3}{a \sqrt [3]{x}}\right )}{3 a}+\frac {1}{a \sqrt [3]{x} (a+b x)}\)

input
Int[1/(x^(4/3)*(a + b*x)^2),x]
 
output
1/(a*x^(1/3)*(a + b*x)) + (4*(-3/(a*x^(1/3)) - (b*(-((Sqrt[3]*ArcTan[(1 - 
(2*b^(1/3)*x^(1/3))/a^(1/3))/Sqrt[3]])/(a^(1/3)*b^(2/3))) - (3*Log[a^(1/3) 
 + b^(1/3)*x^(1/3)])/(2*a^(1/3)*b^(2/3)) + Log[a + b*x]/(2*a^(1/3)*b^(2/3) 
)))/a))/(3*a)
 

3.7.88.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 68
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[Log[RemoveContent[a + b*x, x]]/(2*b*q), x 
] + (Simp[3/(2*b)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1/3)], 
 x] - Simp[3/(2*b*q)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] / 
; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
3.7.88.4 Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.98

method result size
risch \(-\frac {3}{a^{2} x^{\frac {1}{3}}}-\frac {b \,x^{\frac {2}{3}}}{a^{2} \left (b x +a \right )}+\frac {4 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 a^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}}-\frac {2 \ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 a^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}}-\frac {4 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 a^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}}\) \(121\)
derivativedivides \(-\frac {3}{a^{2} x^{\frac {1}{3}}}-\frac {3 b \left (\frac {x^{\frac {2}{3}}}{3 b x +3 a}-\frac {4 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {2 \ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {4 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{a^{2}}\) \(124\)
default \(-\frac {3}{a^{2} x^{\frac {1}{3}}}-\frac {3 b \left (\frac {x^{\frac {2}{3}}}{3 b x +3 a}-\frac {4 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {2 \ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {4 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{a^{2}}\) \(124\)

input
int(1/x^(4/3)/(b*x+a)^2,x,method=_RETURNVERBOSE)
 
output
-3/a^2/x^(1/3)-b/a^2*x^(2/3)/(b*x+a)+4/3/a^2/(a/b)^(1/3)*ln(x^(1/3)+(a/b)^ 
(1/3))-2/3/a^2/(a/b)^(1/3)*ln(x^(2/3)-(a/b)^(1/3)*x^(1/3)+(a/b)^(2/3))-4/3 
/a^2*3^(1/2)/(a/b)^(1/3)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x^(1/3)-1))
 
3.7.88.5 Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.26 \[ \int \frac {1}{x^{4/3} (a+b x)^2} \, dx=-\frac {4 \, \sqrt {3} {\left (b x^{2} + a x\right )} \left (\frac {b}{a}\right )^{\frac {1}{3}} \arctan \left (\frac {2}{3} \, \sqrt {3} x^{\frac {1}{3}} \left (\frac {b}{a}\right )^{\frac {1}{3}} - \frac {1}{3} \, \sqrt {3}\right ) + 2 \, {\left (b x^{2} + a x\right )} \left (\frac {b}{a}\right )^{\frac {1}{3}} \log \left (-a x^{\frac {1}{3}} \left (\frac {b}{a}\right )^{\frac {2}{3}} + b x^{\frac {2}{3}} + a \left (\frac {b}{a}\right )^{\frac {1}{3}}\right ) - 4 \, {\left (b x^{2} + a x\right )} \left (\frac {b}{a}\right )^{\frac {1}{3}} \log \left (a \left (\frac {b}{a}\right )^{\frac {2}{3}} + b x^{\frac {1}{3}}\right ) + 3 \, {\left (4 \, b x + 3 \, a\right )} x^{\frac {2}{3}}}{3 \, {\left (a^{2} b x^{2} + a^{3} x\right )}} \]

input
integrate(1/x^(4/3)/(b*x+a)^2,x, algorithm="fricas")
 
output
-1/3*(4*sqrt(3)*(b*x^2 + a*x)*(b/a)^(1/3)*arctan(2/3*sqrt(3)*x^(1/3)*(b/a) 
^(1/3) - 1/3*sqrt(3)) + 2*(b*x^2 + a*x)*(b/a)^(1/3)*log(-a*x^(1/3)*(b/a)^( 
2/3) + b*x^(2/3) + a*(b/a)^(1/3)) - 4*(b*x^2 + a*x)*(b/a)^(1/3)*log(a*(b/a 
)^(2/3) + b*x^(1/3)) + 3*(4*b*x + 3*a)*x^(2/3))/(a^2*b*x^2 + a^3*x)
 
3.7.88.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{x^{4/3} (a+b x)^2} \, dx=\text {Timed out} \]

input
integrate(1/x**(4/3)/(b*x+a)**2,x)
 
output
Timed out
 
3.7.88.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.06 \[ \int \frac {1}{x^{4/3} (a+b x)^2} \, dx=-\frac {4 \, b x + 3 \, a}{a^{2} b x^{\frac {4}{3}} + a^{3} x^{\frac {1}{3}}} - \frac {4 \, \sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {2 \, \log \left (x^{\frac {2}{3}} - x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 \, a^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {4 \, \log \left (x^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, a^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} \]

input
integrate(1/x^(4/3)/(b*x+a)^2,x, algorithm="maxima")
 
output
-(4*b*x + 3*a)/(a^2*b*x^(4/3) + a^3*x^(1/3)) - 4/3*sqrt(3)*arctan(1/3*sqrt 
(3)*(2*x^(1/3) - (a/b)^(1/3))/(a/b)^(1/3))/(a^2*(a/b)^(1/3)) - 2/3*log(x^( 
2/3) - x^(1/3)*(a/b)^(1/3) + (a/b)^(2/3))/(a^2*(a/b)^(1/3)) + 4/3*log(x^(1 
/3) + (a/b)^(1/3))/(a^2*(a/b)^(1/3))
 
3.7.88.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.17 \[ \int \frac {1}{x^{4/3} (a+b x)^2} \, dx=\frac {4 \, b \left (-\frac {a}{b}\right )^{\frac {2}{3}} \log \left ({\left | x^{\frac {1}{3}} - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a^{3}} + \frac {4 \, \sqrt {3} \left (-a b^{2}\right )^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a^{3} b} - \frac {4 \, b x + 3 \, a}{{\left (b x^{\frac {4}{3}} + a x^{\frac {1}{3}}\right )} a^{2}} - \frac {2 \, \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (x^{\frac {2}{3}} + x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 \, a^{3} b} \]

input
integrate(1/x^(4/3)/(b*x+a)^2,x, algorithm="giac")
 
output
4/3*b*(-a/b)^(2/3)*log(abs(x^(1/3) - (-a/b)^(1/3)))/a^3 + 4/3*sqrt(3)*(-a* 
b^2)^(2/3)*arctan(1/3*sqrt(3)*(2*x^(1/3) + (-a/b)^(1/3))/(-a/b)^(1/3))/(a^ 
3*b) - (4*b*x + 3*a)/((b*x^(4/3) + a*x^(1/3))*a^2) - 2/3*(-a*b^2)^(2/3)*lo 
g(x^(2/3) + x^(1/3)*(-a/b)^(1/3) + (-a/b)^(2/3))/(a^3*b)
 
3.7.88.9 Mupad [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.22 \[ \int \frac {1}{x^{4/3} (a+b x)^2} \, dx=\frac {4\,b^{1/3}\,\ln \left (16\,a^{7/3}\,b^{8/3}+16\,a^2\,b^3\,x^{1/3}\right )}{3\,a^{7/3}}-\frac {\frac {3}{a}+\frac {4\,b\,x}{a^2}}{a\,x^{1/3}+b\,x^{4/3}}-\frac {4\,b^{1/3}\,\ln \left (16\,a^{7/3}\,b^{8/3}\,{\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2+16\,a^2\,b^3\,x^{1/3}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3\,a^{7/3}}+\frac {b^{1/3}\,\ln \left (9\,a^{7/3}\,b^{8/3}\,{\left (-\frac {2}{3}+\frac {\sqrt {3}\,2{}\mathrm {i}}{3}\right )}^2+16\,a^2\,b^3\,x^{1/3}\right )\,\left (-\frac {2}{3}+\frac {\sqrt {3}\,2{}\mathrm {i}}{3}\right )}{a^{7/3}} \]

input
int(1/(x^(4/3)*(a + b*x)^2),x)
 
output
(4*b^(1/3)*log(16*a^(7/3)*b^(8/3) + 16*a^2*b^3*x^(1/3)))/(3*a^(7/3)) - (3/ 
a + (4*b*x)/a^2)/(a*x^(1/3) + b*x^(4/3)) - (4*b^(1/3)*log(16*a^(7/3)*b^(8/ 
3)*((3^(1/2)*1i)/2 + 1/2)^2 + 16*a^2*b^3*x^(1/3))*((3^(1/2)*1i)/2 + 1/2))/ 
(3*a^(7/3)) + (b^(1/3)*log(9*a^(7/3)*b^(8/3)*((3^(1/2)*2i)/3 - 2/3)^2 + 16 
*a^2*b^3*x^(1/3))*((3^(1/2)*2i)/3 - 2/3))/a^(7/3)